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Postdoc CNLS Programs
Center for Nonlinear Studies
P.O. Box 1663

MS B258

Los Alamos, NM 87545

Dear Members of the CNLS,

I would like to apply for a postdoctoral research position in the Center for Nonlinear Studies at Los
Alamos National Laboratory, or for any other appropriate visiting positions.

I am currently an Assistant Professor in the Mathematics Department at the University of Michigan,
Ann Arbor; I completed my Ph.D. in the Program in Applied and Computational Mathematics at
Princeton University in 1998 under the supervision of Professor Philip Holmes.

As I have indicated in an accompanying research statement, I have diverse interests in applied mathe-
matics, particularly in dynamical systems and differential equations. I am especially interested in the
analysis, numerical simulation and modelling of complex spatial and temporal dynamics and pattern
formation in nonlinear spatially extended systems, particularly those occurring in physical applications
such as fluid dynamics, and in biological systems.

In support of my application, I have enclosed a curriculum vitae, which includes a list of publications,
and a statement of my past research and continuing research interests. I have requested that letters
of recommendation be sent to you by my advisor, Professor Philip Holmes (Princeton) and also by
Professors David McLaughlin (Courant Institute, New York University), Charles Doering (Michigan)
and Robert Krasny (Michigan). Thank you for your consideration of this application.

Yours sincerely

Plbitbs

Ralf W. Wittenberg
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Letter of Recommendation for Ralf Wittenberg

December 12, 2001

[ am writing in enthusiastic support of Ralf Wittenberg’s application for
a tenure-track position in your department. Ralf asked me to write a letter
which specifically addresses his teaching history here at the University of
Michigan. I am currently the Associate Chair for Education in the Depart-
ment of Mathematics. Among the dozens of 3-year assistant professors who
have been at Michigan in my time here, Ralf has made one of the most
impressive contributions to our educational program. He has taught courses
at all levels of our curriculum and has been a resounding success at all these
levels. A brief review of his record here at Michigan will make it clear why
[ am certain he will be a very valuable addition to the educational mission
of your department.

I will go through each of his semesters here and discuss his contributjon.
In the fall of 1999, his first semester at Michigan, he taught 2 sections of
Math 156 (Applied Honors Calculus II). This class is a honors class devel-
oped recently by Robert Krasny for Engineering and Applied Mathematics
students who enter the university with advanced AP credit. It is a challeng-
ing and rigorous course. He received instructor ratings of 3.9 and 4.1 (out of
a possible 5.0), which are quite good for a Freshman course. I looked over
all the written comments for the course and many students commented on
how helpful Ralf was. One of them signed themselves simply “An inspired
Mathematics student.”

In the Winter of 2000, Ralf taught 2 sections of Math 216(Differential
Equations). This class is taught in large lectures of around 100 students
together with a recitation/computer lab run by a graduate student. He
received outstanding instructor ratings of 4.2 and 4.7 in a course which i
often unpopular with students. In the written comments, several students
referred to him as the best mathematics teacher they had ever had. Typi-
cal comments include “He presents material/concepts in an organized and
understandable manner and truly cares if the class learns” and “I actually
found myself doing eigenvalues for fun in other classes.” Many other stu-
dents referred to his enthusiasm for the material and his approachability.
After the course was over he volunteered to help to rewrite some of the com-
puter labs (which the students do using MATLAB) and these changes have
been incorporated into subsequent versions of the course.

In Fall 2000, he taught the only 2 sections of Math 256(Applied Honors
Differential Equations). He received phenomenal instructor ratings of 4.9



and 5.0 (out of a possible 5). He developed all of his own material for this
course, including computer labs and a brief introduction to MAPLE (which
has also been used by other instructors.) Comments included “This class
was AWESOME!” and “Ralf is the man. He is one of the best teachers I've
had.” '

In Winter 2001, he taught a graduate course Math 656 on Partial Differ-
ential Equations. This course had a more theoretical focus. His instructor
rating was an impressive 4.7 in this course. (As is common in a small grad-
uate class there were no written comments on the evaluations.)

This semester Ralf is teaching Math 454(Boundary Value Problems for
Partial Differential Equations) and Math 156(Applied Honors Calculus II).
Math 454 is largely taken by students from the Engineering College and the
course is focussed on applications. Next semester he will be teaching Math
454 and Math 471(Introduction to Numerical Methods). Math 471 involves
extensive use of technology by both instructor and students. It is too early
to have received any evaluations yet on these courses, but I expect that they
will be as impressive as ever.

As you can see, Ralf has been a very successful educator at all levels
of our program. He has taught both applications-oriented and more the-
oretical courses with equal aplomb. He is very comfortable and adept at
the integration of technology into the curriculum. I recommend him to you
without reservation.

Sincerely,

Richard D. Capefy
Associate Chair for Education
Professor

Department of Mathematics
University of Michigan
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E-MAIL: doering@umich.edu
23 December 2001
Re: Ralf Wittenberg

This is a letter of reference for Dr. Ralf Wittenberg, who has applied to you for a position.
Ralf has been a postdoctoral assistant professor (non-tenure track) here in the University of
Michigan’s Department of Mathematics since the fall of 1999. Ralf has participated in my research
working group meetings during that time and I have become familiar with several aspects of his
research program. Most recently he has collaborated closely with me on a particular project. More
on that below.

Ralf’s central research focus going back to his Ph.D. dissertation work has been the
numerical and analytical investigation of spatio-temporal chaos. The Kuramoto-Sivashinsky (KS)
equation is one well-characterized paradigm of such phenomena, and Ralf has applied a number of
sophisticated methods of modern applied and numerical analysis to it. I was particularly impressed
by his study of the long-standing and extremely frustrating open question of a priori estimates for
the solutions of the Kuramoto-Sivashinsky equation. The fact is that every numerical simulation has
suggested that the L™ norm of solutions remains O(1) as the length L of the solution interval is
increased (or equivalently, the L* norm of solutions scales at most like L'"?). The problem is that
nobody has ever been able to prove directly from the pde that this scaling is an upper limit; the best
estimates are much higher powers of L. Ralf showed that the addition of a linear, lower order
perturbation to the KS equation produces solutions which violate the observed unperturbed scaling
and approach much closer to the best rigorous estimates. So although Ralf did not solve the problem,
in my mind he has shown that it is much more subtle than it appears. In some sense, in regard to the
asymptotic scaling of norms on long intervals, the KS equation is not structurally stable with respect
to such low order perturbations. I invited Ralf to submit this paper to the journal I edit, Physics
Letters A, and after thorough review I accepted it for publication (subject to minor revisions).

Ralf’s recent project with me has been the study of turbulent Rayleigh-Benard convection in
the Boussinesq equations with the goal of extracting rigorous limits to the heat transport (the Nusselt
number Nu) as a function of the applied temperature difference (the Rayleigh number Ra). This is a
well developed and active field of research, both theoretically and experimentally. Our twist on the
existing approaches has been to include more realistic—in the context of experiments—boundary
conditions. We have generalized the model to include less-than-perfectly thermally conducting
boundaries and showed how one can deduce rigorous estimates. Although this work has not yet led
to a resolution of the major open problem in this area of mathematical fluid dynamics, i.e., that the
best bounds on Nu scale with a higher power of Ra than is observed in experiments, it yields some
interesting insights into the role that the boundary conditions can play in the analysis.

All in all, Ralf is a creative and well-trained applied mathematician with a tremendous range of
computational and analytical tools at his disposal. I expect that his research will have lasting impact.
Ralf has carried a full teaching load (two 3- or 4-credit hour courses at a time) all but one semester
while he has been at Michigan. Ralf takes these duties very seriously, and he has worked hard to
develop his teaching skills at the complete range of levels, from lower division to graduate. This big
responsibility consumed much of his attention here, and consequently his written output has not been
as high as I would have hoped during this period.

Sincerely,

Professor of Mathematics
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December 19, 2001

To whom 1t may concern:

I am writing in support of RALF WITTENBERG's application for a position in your Department.
Ralf is completing an Instructorship at the University of Michigan which he took following a
Postdoc at IMA Minnesota. Prior to that he worked with me from 1994 undl his graduation from
Princeton in 1998. In this period he did two major pieces of work: a careful study of the validity of
center manifold and normal form reductions of a reaction-diffusion (RD) equation near a
codimension two bifurcation point (Physica D, 1997); and numerical and analytical studies, using
wavelet decompositions, of spatiotemporal chaos in the Kuramoto-Sivashinsky (KS) equation,
leading to the development of ‘local models' (Chaos, 1999 and Nonlinear Dynamics, 2001 [the latter
paper was held up for over a year as part of a special issue]). With Jonathan Mattingly, a fellow
PACM student, he also wrote notes on a lecture course I gave at the Newton Institute and did the
bulk of the work in preparing two extensive teview articles (Physics Reports, 1997 and NATO ASI
Proc., 2001).

The RD normal form work was very nice, producing an authoritative paper, over 75% due to Ralf,
but the second problem, which formed Ralf's thesis, was and is much deeper and more difficult. The
procedures for reducing spatially-confined and near-critical evolution equations to (small) ODE and
even PDE (amplitude) systems is well-established, but much less is known about spatially extended
systems. Can one really treat them as weakly coupled ‘arrays' of constrained systems? How should
one ‘replace' the large scales omitted in reduction to a spatially-localised model? What are the key
interactions and energy transport mechanisms among spatial scales?

Mathematically precise versions of, and answers to, these questions would significantly advance our
understanding of numerous pattern forming systems (granular flows, chemical reactions,
morphogenesis, turbulence, ...), not to mention numerical schemes in which, eg., periodic boundary
conditions are applied to a finite subset of an ostensibly unbounded domain. Ralf was able to push
through the use of wavelets to probe and partially answer these questions, and tell a fairly convincing
story, in the special case of the KS equation. In doing so, he reviewed a vast literature: his thesis
remains one of the best introductions to spatiotemporal “chaos." More significantly, he was able to
develop one of the first well-founded classes of local models by appropriately periodizing the
subdomain and replacing the large scales by stochastic forcing.

At the time of his graduation I ranked Ralf in the top quarter of my 22 PhD students (at Cornell and
Princeton): the equal of Andrew Szeri (1988, ONR Fellowship, currently Assoc Prof in ME, UC
Berkeley) or Pieter Swart (1990, currently staff member, Los Alamos NL) at similar stages in their
careers. Three years later, I remain equally impressed, although it has taken some time for him to

Main; (609) 258-3703 - Fax: (609) 258-1735 & www.math.princeton.edu/PACM



find his feet. He has taken his teaching at Michigan very seriously, and is, by all accounts, a great
success (he gives excellent research talks, and writes extremely well). This slowed his research output
for a couple of years, but he is now moving rapidly again.

Specifically, he has extended the tools he developed, following Collet et al.,, to prove analyticity and
attractor dimension bounds for ‘extended' KS, to a broader class of PDEs. He has pushed his
studies of stochastic dynamics of large scales on to a higher order problem - the Nikolaevskii model
- in which scale separation 1s clearer (work with D.Cai). He is also working with C. Doering on
rigorous bounds for bulk transport and dissipation rates in turbulent flows. The emphasis in all this
work is to develop analytical tools leading to rigorous (if conservative) bounds, and to use careful
numerical simulation to probe mechanisms and thereby improve the analysis and understanding of
extended systems. He has chosen a difficult area, but he has the knowledge, creativity, independence
and drive to make a real impact. Indeed, he is already doing so. I strongly support his application; he
would make a wonderful colleague.

Please call me at 609-258-2958 if you wish to discuss his application further.

Sincerely yours,

Philip J. Holmes
Professor of Mechanics and Applied Mathematics

PJH/vm
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December 16, 2001

Letter of Recommendation for Ralf Wittenberg

I'm writing to recommend Ralf Wittenberg for a tenure-track position in applied
mathematics. Ralf has been at Michigan since 1999 after spending a year as a postdoc
at the Institute for Mathematics and its Applications in Minnesota. Ralf has expertise in
applied analysis, dynamical systems, and numerical simulations. Much of his research deals
with the Kuramoto-Sivashinsky (KS) equation, a canonical partial differential equation
that is relevant in many areas of fluid dynamics and physics. The solution of the KS
equation undergoes a transition to chaos for a certain choice of parameter values and
this process is of great interest. Ralf is working to develop a low-dimensional model that
captures the dynamics of the full KS equation. His approach uses a wavelet decomposition
to investigate the transfer of energy between modes that are separated in location and
scale. The work is quite important since there is hope that the insights gained from the
KS equation can be applied to the problem of turbulence in the Navier-Stokes equations.
This is a continuation of Ralf’s thesis work with Phil Holmes at Princeton. Another line of
related work deals with a higher-order generalization of the KS equation, in collaboration
with David Cai and David McLaughlin at Courant. Ralf is also working here at Michigan
with Charlie Doering on a different problem, developing rigorous bounds for heat transport
in turbulent convection. These topics are outside my own field of research and I'll let the
experts describe his accomplishments in more detail. In the remainder of this letter I want
to describe Ralf’s other scholarly activities during his time at Michigan, starting with his
teaching.

Simply put, Ralf did a superb job here in teaching. His teaching load was two courses
per semester, although we did manage to reduce it to one course in the Winter 2001
semester. I had close interaction with Ralf in my capacity as coordinator of applied honors
calculus (Math 156). Ralf taught the course twice, in 1999 and 2001. Each instructor is in
charge of a small section of 30 students or less. Ralf showed great dedication to the course
and the students, e.g. writing up homework solutions and holding extra review sessions
before exams. I met with Ralf and the other instructors each week to discuss the direction
of the course. His comments on these occasions were invariably helpful and he often liked
to discuss the course with me outside the scheduled instructors’ meetings. I attended one
of his classes and observed that his lecturing style was clear and well-organized, and at the
right level for the students.
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Ralf’s work in Math 156 is just the beginning because he taught a variety of other
courses here as well; differential equations for sophomores (Math 216); applied partial
differential equations (Math 454) and numerical analysis (Math 471) for juniors, seniors,
and beginning graduate students; and partial differential equations for advanced graduate
students (Math 656). I want to emphasize that Ralf volunteered to teach all these different
courses. Many non-tenure-track instructors try to repeat the same courses each semester,
but Ralf wouldn’t be satisfied doing that. He saw that we needed instructors in these
courses and this coincided with his own deep interest in teaching these topics. Professor
Dick Canary, our Associate Chair for Education, will be writing about Ralf’s teaching
record from the Department’s viewpoint, but I want to offer my own opinion that Ralf has
been one of our most effective instructors in applied math courses.

Besides having a commitment to high-quality teaching, Ralf has excellent personal
qualities and is an outstanding departmental citizen. He volunteered to organize the weekly
applied math seminar and to enhance the seminar website, and he also volunteered to
serve in the King/Chavez/Parks program which brings inner city middle-school students
on campus to meet with University faculty.

In conclusion, it’s a pleasure to give my strong recommendation to Ralf Wittenberg for
a tenure-track position. I'm confident that he’ll make valuable contributions in research,
teaching, and service.

Sincerely yours,

PASE (e

Robert Krasny
Arthur F. Thurnau Professor
Professor of Mathematics
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December 20, 2001

Recommendation for Ralf Wittenberg:

I understand that Ralf Wittenberg is applying for an entry level position in your
Department of Mathematics, and my purpose in this letter is to provide strong support
for his candidacy.

Dr. Wittenberg works on chaos, and spatiotemporal chaos, in deterministic nonlinear
wave equations. This is an extremely important area in applied mathematics today
_ as the interaction of stochasticity (either in deterministic or random systems) and
nonlinearity is prevalent throughout nature. Dr. Wittenberg brings tools and methods
of dynamical systems theory to his study of evolutionary partial differential equations.
In addition to the tools from dynamical systems theory, Dr. Wittenberg also brings
methods from wavelet analysis to these studies. This combination arms him with a
strong set of analytical and numerical tools for these investigations, as exemplified
in his excellent PhD dissertation “Local Dynamics and Spatiotemporal Chaos. The
Kuramoto-Sivashinsky Equation: A Case Study”, with Professor Philip Holmes as his
advisor.

In addition to this work, he has performed a careful and controlled study of the use
of “normal form methods” for specific partial differential equations — carefully docu-
menting their (limited) usefulness for pde’s. Recently, he has begun a series of studies
concerning the characterization of spatiotemporal chaos, low dimensional chaos within
pde setting, and effective stochastic dynamics. The goal of the latter is to construct
and validate effective equations for the description of large scale, long time behav-
ior in spatiotemporal chaotic systems — descriptions which can be used for long time
prediction within these systems.

His study of the sixth order Nikoloevskii equation (with David Cai) is particularly
promising in that this equation possesses a clear scale separation permitting very de-
tailed and precise information about the validity of the effective equations. Moreover,
the effective diffusion coefficient for this model possesses its own distinct characteris-
tics, which predict distinctive phenomena in the behavior of the nonlinear wave.

In addition to his work in spatiotemporal chaos for pde’s, Dr. Wittenberg has begun
working on bounds for bulk flow quantities in fluid dynamics. This work was initiated
during his instructorship at the University of Michigan, jointly with Charlie Doering
and others. I am certain that other referees will address it specifically.

Dr. Ralf Wittenberg is an exceptionally clear expositor, both in writing and lectures.
He is a very conscientious person and careful scholar. I am certain that he is an
outstanding teacher and would make an excellent colleague. He has the potential to



become a fine researcher, and I recommend him to you with enthusiasm.

Sincerely yours,

Pl Wty -

David W. McLaughlin
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Last (Family) Name: Wittenberg
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Middle Name or Initial: Werner
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Home Phone

Department of Mathematics, University of Michigan (7184) 827-9672
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Department of Mathematics, University of Michigan (734) 763-5725
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Primary Interest 37
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RALF W. WITTENBERG

Department of Mathematics Home: (734) 327-9672
University of Michigan Office: (734) 763-5725
2072 East Hall, 525 E. University Ave. Fax: (734) 763-0937
Ann Arbor, MI 48109-1109 E-mail: ralf@math.lsa.umich.edu

Web: http://www.math.lsa.umich.edu/ ralf
Citizenship: South African

RESEARCH INTERESTS

Complex spatial and temporal dynamics in extended systems, spatiotemporal chaos;
dynamical systems; pattern formation; nonlinear evolution equations; differential equations;
applied mathematics; fluid dynamics, mathematical biology.

WORK EXPERIENCE

Assistant Professor, Sep. 1999 - Aug. 2002,
Department of Mathematics, University of Michigan, Ann Arbor, ML

Postdoctoral Member, Sep. 1998 — Aug. 1999,
Mathematics in Biology program year,
Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN.

EDUCATION

Sep. 1993 — Aug. 1998: Ph.D.: Applied and Computational Mathematics.
Princeton University, Princeton, NJ. Advisor: Philip J. Holmes.
Dissertation title:
Local Dynamics and Spatiotemporal Chaos. The Kuramoto-Sivashinsky Equation: A Case Study
M.A., Applied and Computational Mathematics, May 1995.

Feb. 1992 - Aug. 1993: Master of Science (with distinction): Applied Mathematics.
University of Cape Town, South Africa. Advisor: George F.R. Ellis.
Dissertation title: Models of Self-Organization in Biological Development

Feb. 1991 — Nov. 1991: Bachelor of Science (Honours) (summa cum laude): Physics.
University of Natal, Durban, South Africa. Advisor: Manfred A. Hellberg.

Feb. 1988 — Nov. 1990: Bachelor of Science (cum laude): Mathematics, Physics, Chemistry.
University of Natal, Durban, South Africa.

PUBLICATIONS

Journal Articles

1. "Large-scale contributions to spatiotemporal chaos.” In preparation.

2. “Bounds on the Nusselt-Rayleigh number relationship in a fluid layer with a constant heat flux.”
In preparation, with J. Otero, C. R. Doering, R. A. Worthing, H. Johnston and B. J. Keen.

3. Ralf W. Wittenberg, “Dissipativity, analyticity and viscous shocks in the (de)stabilized Kuramoto-
Sivashinsky equation.” To appear in Physics Letters A.

4. Ralf W. Wittenberg and Philip Holmes, “Spatially localized models of extended systems.” Nonlinear
Dynamics, 25 (1/3), 111-132 (2001).

5. Ralf W. Wittenberg and Philip Holmes, “Scale and space localization in the Kuramoto-Sivashinsky
equation.” Chaos, 9 (2), 452-465 (1999).



6. Philip J. Holmes, John L. Lumley, Gal Berkooz, Jonathan C. Mattingly and Ralf W. Wittenberg,
“Low-dimensional models of coherent structures in turbulence.” Physics Reports, 287 (4), 337-384
(1997).

7. Ralf W. Wittenberg and Philip Holmes, “The limited effectiveness of normal forms: a critical review
and extension of local bifurcation studies of the Brusselator PDE.” Physica D, 100, 1-40 (1997).

Conference Proceedings and other Publications
1. “Kuramoto-Sivashinsky equation.” Invited article, to appear in Encyclopaedia of Mathematics,
Supplement 111, Kluwer Academic Publishers.

2. Ralf W. Wittenberg, “Local Dynamics and Spatiotemporal Chaos. The Kuramoto-Sivashinsky
Equation: A Case Study.” Ph.D. thesis, Princeton University, 1998.

3. Philip J. Holmes, Jonathan C. Mattingly and Ralf W. Wittenberg, “Low-Dimensional Models of
Turbulence or, the Dynamics of Coherent Structures.” In From Finite to Infinite Dimensional
Dynamical Systems (J.C. Robinson and P.A. Glendinning, eds.), NATO Science Series II, vol. 19
(Proceedings of the NATO Advanced Study Institute, Cambridge, UK, 21 August-1 September
1995), Kluwer Academic Publishers, Dordrecht, 2001, pp. 177-215.

4. Ralf W. Wittenberg, “Models of Self-Organization in Biological Development.” M.Sc. thesis,
University of Cape Town, 1993.

5. R.W. Wittenberg, M.A. Hellberg and W. Feneberg, “Ambipolar Transport in a Magnetically Per-
turbed Tokamak Edge-Region.” Proceedings, International Conference on Plasma Physics, Inns-
bruck (1992).

PRESENTATIONS
Invited Talks

Nov. 2001: Applied Mathematics Seminar, University of Michigan, Ann Arbor, MI.
Oct. 2001: Nonlinear Science Seminar, Northwestern University, Evanston, IL.

Sep. 2001: Partial Differential Equations Seminar, Indiana University, Bloomington, IN.
May 2001: SIAM Conference on Applications of Dynamical Systems, Snowbird, UT.

Dec. 2000: Joint Physics Seminar, Bowling Green State University/University of Toledo, Bowling
Green, OH.

May 1999: Minisymposium “Characterization of Spatiotemporal Chaos”, STAM Conference on Appli-
cations of Dynamical Systems, Snowbird, UT.

Jan. 1999:  Applied Mathematics Seminar, University of Michigan, Ann Arbor, MI.
Dec. 1998: Postdoctoral Seminar, IMA, University of Minnesota, Minneapolis, MN.

Oct. 1997: Cornell Workshop on POD-Galerkin Models for the Dynamics and Control of Complex
Flows, Ithaca, NY.

June 1997:  Joint South African Mathematical Society/AMS Conference, Pretoria.
May 1997: SIAM Conference on Applications of Dynamical Systems, Snowbird, UT.

Feb. 1996: Nonlinear Science Seminar, Princeton University, Princeton, NJ.
Posters

Sep. 2000: Fluid Dynamics: Theory, Computation & Application, Michigan Interdisciplinary Mathe-
matics Meeting I1I, Ann Arbor, ML

Jun. 2000: Nonlinear Analysis 2000 —, Courant Institute, New York, NY.



TEACHING EXPERIENCE

University of Michigan, Assistant Professor, 1999-2002.
Applied Honors Calculus II: Integration (Math 156, Fall 1999: 2 sections, Fall 2001);
Differential Equations (Math 216, Winter 2000: 2 sections, Summer 2000, Spring 2001);
Applied Honors Calculus IV: Differential Equations (Math 256, Fall 2000: 2 sections);
Partial Differential Equations (Math 656, Winter 2001, graduate level);
Boundary Value Problems for Partial Differential Equations (Math 454, Fall 2001, Winter 2002);
Introduction to Numerical Methods (Math 471, Winter 2002).

Princeton University, Teaching Assistant, 1994-1996.
Graduate course in asymptotic analysis (3 times), undergraduate course in ODEs.

University of Cape Town, Teaching Assistant, 1992-1993.
Ordinary Differential Equations (1993): Lecturer;
Advanced Calculus, Mechanics, ODEs (1992): Teaching assistant.

University of Natal, Durban, Teaching Assistant, 1991.

Supervision of undergraduate physics laboratories, and grading of laboratory reports.

ACADEMIC HONORS

Princeton University (1993-98):
Charlotte Elizabeth Procter Honorific Fellowship
Princeton University First-Year Fellowship, and Entering Prize of $2500
University of Cape Town Queen Victoria Scholarship

University of Cape Town (1992-93):
AECI Postgraduate Research Fellowship
UCT Research Associateship

University of Natal, Durban (1988-91):
University of Natal Postgraduate Scholarship
AECI Undergraduate Scholarship
Various university academic merit awards

CONFERENCES, WORKSHOPS, AND SUMMER SCHOOLS ATTENDED

May 2001: SIAM Conference on Applications of Dynamical Systems, Snowbird, UT.
Nov. 2000: Midwest Partial Differential Equations Seminar, University of Chicago, Chicago, IL.

Sep. 2000:  Fluid Dynamics: Theory, Computation & Application, Michigan Interdisciplinary Mathe-
matics Meeting III, Ann Arbor, ML

Jun. 2000:  Nonlinear Analysis 2000 —, Courant Institute, New York, NY.
May 1999:  STAM Conference on Applications of Dynamical Systems, Snowbird, UT.

Sep. 1998 — Jun. 1999:  Mathematics in Biology, Theme Year
Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN.

May 1998: Pattern Formation in Continuous and Coupled Systems, IMA Workshop, Minneapolis, MN.

Oct. 1997 Cornell Workshop on POD-Galerkin Models for the Dynamics and Control of Complex
Flows, Tthaca, NY.

Jun. 1997:  Joint Meeting, South African Mathematical Society /AMS/SAMSA, Pretoria, South Africa.

May 1997: SIAM Conference on Applications of Dynamical Systems, Snowbird, UT.



Jun. — Jul. 1996: Probability, Summer School, Institute for Advanced Study/Park City Mathematics
Institute, Princeton, NJ.

Aug. 1995:  From Finite to Infinite Dimensional Dynamical Systems, Summer School, NATO Advanced
Study Institute, Newton Institute for Mathematical Sciences, Cambridge, UK.

Jan. 1995:  Dynamics Days, Houston, TX.

Jan. — Feb. 1993:  Dynamical Systems and Nonlinear Analysis, Summer School, Cape Town, South
Africa.

Jan. 1992:  Chaos and Quantum Chaos, Summer School, Blydepoort, South Africa.

OTHER ACADEMIC ACTIVITIES

Fall 2001: Host for middle school students in King/Chavez/Parks visitation program.

Sep. 2001 — Apr. 2002: Organizer, Applied and Interdisciplinary Mathematics seminar, University of
Michigan.
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Research Statement — RALF W. WITTENBERG

My research interests fall in the general field of nonlinear dynamics, particularly complex spatial
and temporal dynamics and pattern formation, with a view also towards applications in various
physical, chemical or biological contexts. My current interests focus mainly on spatiotemporally
complex and chaotic systems, typically spatially extended infinite-dimensional dynamical systems
modeled by partial differential equations (PDEs).

As I outline below, I seek to combine a range of techniques, including methods from finite-
dimensional dynamical systems and bifurcation theory, low-dimensional models, applied analysis of
the PDEs, asymptotic analysis and careful scientific computation, to investigate the properties and
origins of the observed spatiotemporal complexity. The work described below includes my main cur-
rent research directions and achievements. I am also interested in problems arising in other disciplines,
however, and would in future especially like to increase my focus on dynamics and pattern formation
in biological applications; my past experience in this area includes my participation in the IMA Pro-
gram Year on Mathematical Biology and my master’s thesis, which concerned models in biological
development.

Local Bifurcation and Normal Form Theory An early triumph of the use of center manifold
and normal form reduction and bifurcation theory to study the spatiotemporally complex dynamics
of a high-dimensional dynamical system near a bifurcation point was the prediction by Guckenheimer
[19], of Sil'nikov chaos in the Brusselator reaction-diffusion system by an analysis of the unfolding
of the codimension two transcritical (Turing)/Hopf bifurcation. This work stimulated many detailed
studies of normal forms and the complex dynamics occurring in the unfolding of this and other
bifurcations of codimension greater than one. However, through careful comparison of the predictions
of normal form theory with approximations of the full PDE (using inter alia computer algebra and
numerical bifurcation calculations), I found that this normal form approach has limited usefulness
for the understanding of spatiotemporal complexity for the Brusselator PDE, in that the parameter
ranges in which the normal form predictions may be applied, are very small [42].

Spatiotemporal Chaos and the Kuramoto-Sivashinsky equation

More recently I have largely concentrated on studying systems with much more complex spatiotem-
poral dynamics [12]. Spatiotemporal chaos (STC) is a fascinating and incompletely understood phe-
nomenon. I have developed new approaches and used existing analytical, numerical and modeling
tools for the investigation and characterization of STC, as I outline below, and I hope to continue to
contribute to the understanding of STC.

I have focused particularly on a class of equations including the one-dimensional Kuramoto-
Sivashinsky (KS) equation,

typically with periodic boundary conditions on a domain of length L. This equation (see [40] for
an overview) has arisen in many contexts in which a long-wavelength primary instability is coupled
to small-scale damping in the presence of appropriate symmetries [31], such as plasma ion mode
instabilities, chemical phase turbulence, and flame front instabilities. The number of linearly unstable
Fourier modes is proportional to L, and for increasing L a rich bifurcation sequence through cellular
states, standing, traveling and modulated traveling waves and heteroclinic cycles and more complex
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Figure 1: (a) Gray-scale view (peaks are light, troughs are dark) of a solution of the KS equation (1)
on the spatiotemporally chaotic attractor for L = 100, covering 256 time units separated by At = 1,
clearly showing the typical cellular structure, travelling cells, and creation and annihilation of peaks.
(b) Rescaled Fourier power spectrum S(k) = L(|4x|?), for L = 100 and L = 800.

spatiotemporal solution phenomena has been described [24, 27|, which eventually all appear to become
unstable to a spatiotemporally chaotic attractor; Fig. 1(a) shows a typical evolution.

Characterization of Spatiotemporal Chaos In my thesis [39], I showed by extensive numerical
simulations that a projection onto a suitable (spline) wavelet basis can supplement real and Fourier
space statistics [34] (see Fig. 1(b)) to elucidate features of the dynamics on the attractor. The wavelet
approach (following [2, 17]) effectively separates and distinguishes between scales having qualitatively
different wavelet coefficient distributions, invariant in the STC regime: there are large scales of slow
Gaussian fluctuations, “active” scales near the peak of the power spectrum involving spatially localized
interactions of energetic coherent structures, and strongly damped small scales with exponentially
decaying energy.

Furthermore, I showed ([39], summarized in [43, 44]) how novel simulations help one to infer the
existence of a characteristic spatial interaction length [, for instantaneous dynamical influences. Other
numerical experiments in which one eliminates or forces different wavelet levels provide a detailed
picture of the dynamical contributions of the different wavelet levels to the overall spatiotemporally
complex dynamics. In computations in progress, I am able to use the wavelet analysis to observe
the localized nature of the energy transfer cascade in both Fourier and physical space, extending the
independent recent related work of [32]. I hope to develop these wavelet-based methods for studying
the dynamics in space and scale to other problems (see also [46]), including higher-dimensional systems.

An important consequence of my (continuing) work, deduced through the wavelet-based numerical
experiments and by comparison with related models with modified dispersion relations (discussed be-
low), has been to clarify the role of the large scales in the flat region of the spectrum (Fig. 1(b)) [38]:
though they contain a fairly small fraction of the total energy, if they are absent or suppressed the dy-
namics decay to a steady roll state, while in the presence of excessive large-scale driving the STC gives
way to sustained Burgers shock-like solutions. Remarkably, though, experiments in which the large-



scale modes are replaced by uncorrelated, autonomously generated stochastic Langevin (Ornstein-
Uhlenbeck) processes display active-scale dynamics and statistics quite similar to those typical of the
full (deterministic) PDE. That is, STC appears to be driven and maintained by a “heat bath” of
large-scale random excitation at (self-consistently) appropriate amplitudes. Conversely, as discussed
further below the active-scale chaos induces this effective stochasticity at the large scales. Together,
these two ideas account for STC via the mutual interactions between the active and large scales.

Low-Dimensional Models Guided by our results on scale and space localization, following |2,
13, 17] we have investigated spatially localized models for the KS equation. The approach of obtaining
low-dimensional models capturing the essential features of high-dimensional systems (reviewed in [21])
typically involves projection of the governing equations onto suitable modes obtained via the proper
orthogonal (POD, or Karhunen-Loéve) decomposition. However, the POD modes in our translation-
invariant system are Fourier modes, which are not spatially localized, so in my thesis I studied several
models for the evolution of a subset of the full wavelet basis, the neglected modes modeled by external
forcing.

To summarize the results: diverse numerical experiments indicate that KS dynamics and statistics
typical of the STC regime are captured only in models in which translational symmetry is maintained,
and that there is persuasive evidence that short periodized systems, internally forced at their largest
scales, may form minimal models for chaotic dynamics in arbitrarily large domains [44]. This suggests
that my planned detailed study of the dynamics and bifurcations of a relatively low-dimensional model
of KS dynamics subject to large-scale forcing may be promising. The successful construction of such
a low-dimensional system modeling the active scales and displaying features of extensive chaos would
give a more precise meaning to the idea that an extended chaotic system in the “thermodynamic
limit” can be understood as a collection of weakly interacting small subsystems [12, 18] by explicit
construction of such minimal subsystems.

Generalizations of the KS equation

Consider the family of self-adjoint higher-order generalizations of the KS equation,
Opu = (—83);} {ezu — (1 + 82)2 u] — udyu, z € [0,L], periodic boundary conditions  (2)

where p > 0 is an integer. For p = 0, €2 = 1 this is a rescaled version of the KS equation (1), and
in general for p = 0 the above equation describes the linearly damped KS equation [31], for which
it has been argued that the route to STC occurs via spatiotemporal intermittency as €2 increases
towards 1 [7, 16]. For p = 1, this equation (proposed for the propagation of longitudinal seismic
waves in viscoelastic media and sometimes known as the Nikolaevskii model [1, 45]) has attracted
recent attention [30, 37] as a model for pattern formation in the presence of Galilean symmetry. The
neutrally stable long-wave mode coupled to the KS-like short-wave instability drives the dynamics so
that (for sufficiently large L) by contrast with the KS case p = 0 there is a direct transition from a
spatially uniform state to spatiotemporal chaos as € increases above zero [36]. In view of this novel
behavior, it is of interest to study spatiotemporally chaotic phenomena in the Nikolaevskii model and
its generalizations (2), as they may also shed light on the KS equation and on STC in general.

Analysis of the PDEs and Bounds on the Attractor Following the Fourier space methods of
Collet et al. [8, 9], T have recently proved the dissipativity in L? and analyticity of solutions of (2). For
€2 < 1, p > 0, the radius of an L? absorbing ball has a bound of the form limsup,_, [Jull? <
K,e(12p+26)/(2p+5) [(8p+16)/(2p+5)  \which extends the results for the damped KS equation (p = 0)
reported in [39, 41]. I plan to continue the study of mathematical properties such as attractors and



inertial manifolds [35] for the model class of systems (2), as it is as yet in general unknown whether and
how the properties of dissipative dynamical systems depend on the order of the differential operator.

Similar computations for p = 0 and €2 > 1 [41] shed light on an open problem concerning the
KS thermodynamic limit L — oo: Numerical evidence strongly indicates that for large L one has
“extensive chaos” [18], in which due to rapid decay of spatial correlations [43] local dynamics and
pointwise bounds on solutions are asymptotically independent of system size, while extensive quantities
such as the energy [[ul|3 and the number of positive Lyapunov exponents [29] should be proportional
to L. However, the available bounds for the KS equation (see [41]) all appear to be suboptimal; for
instance, the best rigorous estimate of the L? absorbing ball is |[u||3 < K L6/,

For p = 0 I have shown [39, 41] that an L? bound of the above form holds also for the KS
equation with €? > 1, in which case the linear term is destabilizing, driving energy into the large
scales. However, for sufficiently large €2 (¢2 > 1.5 seems to suffice) numerical solutions indicate that
the dynamics are attracted to an internal layer shock-like solution, whose existence is corroborated
by a large-¢ asymptotic analysis. The energy for this solution scales as |lul|3 ~ Ke'L?, consistent
with the rigorous bound but not extensive [41]. This example shows that since the previous analytical
methods also work for €2 > 1, for which extensivity fails, a successful proof of extensivity for the KS
equation will require an approach that fails on this p = 0, €2 > 1 problem, possibly via a careful
analysis of large-scale modal interactions. Detailed asymptotic analysis and further investigations of
the stability and bifurcations of this shock-like solution are continuing, in the hope that they might
further clarify the KS limit ¢ — 1.

Effective Stochastic Dynamics at the Large Scales There has been considerable effort de-
voted towards understanding the effective Gaussian dynamics at large length and time scales (see
[4, 28, 43]). Much of the effort has concentrated on validating via renormalization group and other
approaches the conjecture of Yakhot [47] that the coarse-grained large-scale dynamics may be well-
described by a noise-driven Burgers (or Kardar-Parisi-Zhang) equation

Up = VUgy + Autly + [,

with f a stochastic force, the (deterministic) chaotic dynamics at active and small scales forcing the
large scales and renormalizing the diffusion coefficient to generate a positive effective v.

A constructive approach to extracting the effective slow-mode, large-scale dynamics was initiated
by Zaleski [48] (see also [5]) who proposed an explicit procedure to eliminate wavelengths shorter
than some cutoff. The effective viscosity v (v ~ 10 for the KS equation [20, 48]) could then be self-
consistently estimated from time-dependent correlations. However, the applicability of this procedure
for the KS equation is unclear, as there is no good separation of scales or obvious choice of cutoff
wavelength (see Fig. 1(b)). Thus (jointly with David Cai) I am currently investigating this procedure
for the 6th-order Nikolaevskii model (p = 1 in (2)), for which extensive computations show, as in
Fig. 2(a), that for large L and small ¢ there is a clear separation of scales; as seen clearly in Fig. 2(b),
near k =~ (.5 there is a range of modes increasingly damped for decreasing ¢, so that a cutoff wavelength
in this range may be chosen much more plausibly than for the KS model. Preliminary computations
indicate that Zaleski’s constructive procedure appears to yield an effective diffusion coefficient v near
zero for small e, implying that the large-scale dynamics may in the limit be described by an inviscid
Burgers equation.

The goal of our continuing research is to understand systematically the mode elimination and
coarse-graining procedure, in the hope that this may partially validate the application of stochas-
tic methods to deterministic problems [28], and shed light on the fundamental question: How can
stochasticity arise from fully deterministic dynamics?
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Figure 2: (a) A solution of the generalized KS equation (2) (p = 1: Nikolaevskii model) for L = 800
and 2 = 0.04; compare Fig. 1(a), noting the change in length scales. (b) Power spectrum for solutions
of (2) (p = 1) for L = 1600 and &2 = 0.04 (solid), €2 = 0.01 (dashed) and &2 = 0.005 (dotted); for
small ¢ the longest-wave (low k) Fourier modes are increasingly well separated from the active-scale
linearly unstable modes near k = 1 (compare Fig. 1(b)).

Fluid Dynamics

Bounds on Bulk Flow Quantities: Convection A fundamental question in the Rayleigh-Bénard
problem of heating a bounded fluid layer from below is to estimate the total rate of bulk heat transport
directly from the governing Boussinesq equations, specifically, in bounding the Nusselt number Nu
(the non-dimensionalized measure of convective heat transfer) in terms of the Rayleigh number Ra,
defined as the non-dimensionalized (averaged) temperature difference across the plates. In the high-Ra
convective turbulence limit, the Nu—FRa relationship is expected to follow a scaling law, Nu ~ Ra”.
While experiments and heuristic physical scaling laws suggest bounds with exponents roughly between
1/4 and 1/3 (current values lie in the range v ~ 0.28 — 0.31; see [25] and references therein), the best
available rigorous bounds (without additional smoothness assumptions [10, 26] or constraints such as
infinite Prandtl number [11]) yield an exponent of y = 1/2 [15].

In seeking to account for this discrepancy with experiment, we have been examining more carefully
the assumptions of this model, particularly the temperature boundary conditions. In practice, the
experimental fluid is bounded by plates of finite thickness and conductivity, and especially for high
temperature gradients (large Ra) the usual assumption of a fixed (Dirichlet) uniform temperature
distribution on the fluid boundaries appears unrealistic. We have thus studied the Neumann (fixed
flux) problem [6], and have formulated appropriate variational principles and extracted upper bounds
in both the Howard-Busse [3, 22] and Doering-Constantin [14, 15] formulations [33]. Currently we are
studying the more physically realistic problem, in which the finite thickness d and conductivity & of
the plates (modeled by a heat equation [23]) are taken into account, and I have recently demonstrated
that while the rigorous bound still has a scaling exponent of 1/2, the fixed temperature problem,
corresponding to the limits d — 0 and/or K — oo, seems to be a singular limit of the full problem.
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